- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Kapritsos, Manos (3)
-
Zhang, Tony Nuda (3)
-
Chajed, Tej (2)
-
Hance, Travis (2)
-
Parno, Bryan (2)
-
Sharma, Upamanyu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Zhang, Tony Nuda; Hance, Travis; Chajed, Tej; Kapritsos, Manos; Parno, Bryan (, USENIX)Proving the correctness of a distributed protocol is a challenging endeavor. Central to this task is finding an inductive invariant for the protocol. Currently, automated invariant inference algorithms require developers to describe protocols using a restricted logic. If the developer wants to prove a protocol expressed without these restrictions, they must devise an inductive invariant manually. We propose an approach that simplifies and partially automates finding the inductive invariant of a distributed protocol, as well as proving that it really is an invariant. The key insight is to identify an invariant taxonomy that divides invariants into Regular Invariants, which have one of a few simple low-level structures, and Protocol Invariants, which capture the higher-level host relationships that make the protocol work. Building on the insight of this taxonomy, we describe the Kondo methodology for proving the correctness of a distributed protocol modeled as a state machine. The developer first manually devises the Protocol Invariants by proving a synchronous version of the protocol correct. In this simpler version, sends and receives are replaced with atomic variable assignments. The Kondo tool then automatically generates the asynchronous protocol description, Regular Invariants, and proofs that the Regular Invariants are inductive on their own. Finally, Kondo combines these with the synchronous proof into a draft proof of the asynchronous protocol, which may then require a small amount of user effort to complete. Our evaluation shows that Kondo reduces developer effort for a wide variety of distributed protocols.more » « less
-
Zhang, Tony Nuda; Sharma, Upamanyu; Kapritsos, Manos (, Proceedings of the ACM on Programming Languages)Understanding and debugging the performance of distributed systems is a notoriously hard task, but a critical one. Traditional techniques like logging, tracing, and benchmarking represent a best-effort way to find performance bugs, but they either require a full deployment to be effective or can only find bugs after they manifest. Even with such techniques in place, real deployments often exhibit performance bugs that cause unwanted behavior. In this paper, we present Performal, a novel methodology that leverages the recent advances in formal verification to provide rigorous latency guarantees for real, complex distributed systems. The task is not an easy one: it requires carefully decoupling the formal proofs from the execution environment, formally defining latency properties, and proving them on real, distributed implementations. We used Performal to prove rigorous upper bounds for the latency of three applications: a distributed lock, ZooKeeper and a MultiPaxos-based State Machine Replication system. Our experimental evaluation shows that these bounds are a good proxy for the behavior of the deployed system and can be used to identify performance bugs in real-world systems.more » « less
An official website of the United States government

Full Text Available